3.2.82 \(\int \frac {(a+a \sec (c+d x))^3}{\sec ^{\frac {3}{2}}(c+d x)} \, dx\) [182]

Optimal. Leaf size=131 \[ \frac {4 a^3 \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {20 a^3 \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{3 d}+\frac {2 a^3 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {2 a^3 \sqrt {\sec (c+d x)} \sin (c+d x)}{d} \]

[Out]

2/3*a^3*sin(d*x+c)/d/sec(d*x+c)^(1/2)+2*a^3*sin(d*x+c)*sec(d*x+c)^(1/2)/d+4*a^3*(cos(1/2*d*x+1/2*c)^2)^(1/2)/c
os(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d+20/3*a^3*(cos(1/2*
d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)
/d

________________________________________________________________________________________

Rubi [A]
time = 0.12, antiderivative size = 131, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 6, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {3876, 3854, 3856, 2720, 2719, 3853} \begin {gather*} \frac {2 a^3 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}+\frac {2 a^3 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {20 a^3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {4 a^3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + a*Sec[c + d*x])^3/Sec[c + d*x]^(3/2),x]

[Out]

(4*a^3*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (20*a^3*Sqrt[Cos[c + d*x]]*Ellipti
cF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (2*a^3*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]]) + (2*a^3*Sqrt[Sec
[c + d*x]]*Sin[c + d*x])/d

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3854

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Csc[c + d*x])^(n + 1)/(b*d*n)), x
] + Dist[(n + 1)/(b^2*n), Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Integer
Q[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3876

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Int[Expand
Trig[(a + b*csc[e + f*x])^m*(d*csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0]
 && IGtQ[m, 0] && RationalQ[n]

Rubi steps

\begin {align*} \int \frac {(a+a \sec (c+d x))^3}{\sec ^{\frac {3}{2}}(c+d x)} \, dx &=\int \left (\frac {a^3}{\sec ^{\frac {3}{2}}(c+d x)}+\frac {3 a^3}{\sqrt {\sec (c+d x)}}+3 a^3 \sqrt {\sec (c+d x)}+a^3 \sec ^{\frac {3}{2}}(c+d x)\right ) \, dx\\ &=a^3 \int \frac {1}{\sec ^{\frac {3}{2}}(c+d x)} \, dx+a^3 \int \sec ^{\frac {3}{2}}(c+d x) \, dx+\left (3 a^3\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx+\left (3 a^3\right ) \int \sqrt {\sec (c+d x)} \, dx\\ &=\frac {2 a^3 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {2 a^3 \sqrt {\sec (c+d x)} \sin (c+d x)}{d}+\frac {1}{3} a^3 \int \sqrt {\sec (c+d x)} \, dx-a^3 \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx+\left (3 a^3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx+\left (3 a^3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx\\ &=\frac {6 a^3 \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {6 a^3 \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {2 a^3 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {2 a^3 \sqrt {\sec (c+d x)} \sin (c+d x)}{d}+\frac {1}{3} \left (a^3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx-\left (a^3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx\\ &=\frac {4 a^3 \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {20 a^3 \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{3 d}+\frac {2 a^3 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {2 a^3 \sqrt {\sec (c+d x)} \sin (c+d x)}{d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 1.07, size = 169, normalized size = 1.29 \begin {gather*} \frac {a^3 \left (\cos \left (\frac {c}{2}\right )-i \sin \left (\frac {c}{2}\right )\right ) \left (\cos \left (\frac {c}{2}\right )+i \sin \left (\frac {c}{2}\right )\right ) \left (\frac {24 i \, _2F_1\left (-\frac {1}{4},\frac {1}{2};\frac {3}{4};-e^{2 i (c+d x)}\right )}{\sqrt {1+e^{2 i (c+d x)}}}+2 \left (-6 i-10 i \sqrt {1+e^{2 i (c+d x)}} \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};-e^{2 i (c+d x)}\right ) \sec (c+d x)+\sin (c+d x)+3 \tan (c+d x)\right )\right )}{3 d \sqrt {\sec (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Sec[c + d*x])^3/Sec[c + d*x]^(3/2),x]

[Out]

(a^3*(Cos[c/2] - I*Sin[c/2])*(Cos[c/2] + I*Sin[c/2])*(((24*I)*Hypergeometric2F1[-1/4, 1/2, 3/4, -E^((2*I)*(c +
 d*x))])/Sqrt[1 + E^((2*I)*(c + d*x))] + 2*(-6*I - (10*I)*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/4,
 1/2, 5/4, -E^((2*I)*(c + d*x))]*Sec[c + d*x] + Sin[c + d*x] + 3*Tan[c + d*x])))/(3*d*Sqrt[Sec[c + d*x]])

________________________________________________________________________________________

Maple [A]
time = 0.06, size = 172, normalized size = 1.31

method result size
default \(-\frac {4 a^{3} \left (2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-4 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+5 \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-3 \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{3 \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(172\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(d*x+c))^3/sec(d*x+c)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-4/3*a^3*(2*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)-4*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+5*(2*sin(1/2*d*x
+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-3*(2*sin(1/2*d*x+1/2*c)^
2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d
*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^3/sec(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

integrate((a*sec(d*x + c) + a)^3/sec(d*x + c)^(3/2), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 1.16, size = 148, normalized size = 1.13 \begin {gather*} -\frac {2 \, {\left (5 i \, \sqrt {2} a^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 5 i \, \sqrt {2} a^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 i \, \sqrt {2} a^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 i \, \sqrt {2} a^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \frac {{\left (a^{3} \cos \left (d x + c\right ) + 3 \, a^{3}\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}\right )}}{3 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^3/sec(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

-2/3*(5*I*sqrt(2)*a^3*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) - 5*I*sqrt(2)*a^3*weierstrassP
Inverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 3*I*sqrt(2)*a^3*weierstrassZeta(-4, 0, weierstrassPInverse(-4,
 0, cos(d*x + c) + I*sin(d*x + c))) + 3*I*sqrt(2)*a^3*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*
x + c) - I*sin(d*x + c))) - (a^3*cos(d*x + c) + 3*a^3)*sin(d*x + c)/sqrt(cos(d*x + c)))/d

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} a^{3} \left (\int \frac {1}{\sec ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx + \int \frac {3}{\sqrt {\sec {\left (c + d x \right )}}}\, dx + \int 3 \sqrt {\sec {\left (c + d x \right )}}\, dx + \int \sec ^{\frac {3}{2}}{\left (c + d x \right )}\, dx\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))**3/sec(d*x+c)**(3/2),x)

[Out]

a**3*(Integral(sec(c + d*x)**(-3/2), x) + Integral(3/sqrt(sec(c + d*x)), x) + Integral(3*sqrt(sec(c + d*x)), x
) + Integral(sec(c + d*x)**(3/2), x))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^3/sec(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate((a*sec(d*x + c) + a)^3/sec(d*x + c)^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^3}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a/cos(c + d*x))^3/(1/cos(c + d*x))^(3/2),x)

[Out]

int((a + a/cos(c + d*x))^3/(1/cos(c + d*x))^(3/2), x)

________________________________________________________________________________________